Decomposition of heterogeneous organic matter and its long-term stabilization in soils
نویسندگان
چکیده
Soil organic matter is a complex mixture of material with heterogeneous biological, physical, and chemical properties. Decomposition models represent this heterogeneity either as a set of discrete pools with different residence times or as a continuum of qualities. It is unclear though, whether these two different approaches yield comparable predictions of organic matter dynamics. Here, we compare predictions from these two different approaches and propose an intermediate approach to study organic matter decomposition based on concepts from continuous models implemented numerically. We found that the disagreement between discrete and continuous approaches can be considerable depending on the degree of nonlinearity of the model and simulation time. The two approaches can diverge substantially for predicting long-term processes in soils. Based on our alternative approach, which is a modification of the continuous quality theory, we explored the temporal patterns that emerge by treating substrate heterogeneity explicitly. The analysis suggests that the pattern of carbon mineralization over time is highly dependent on the degree and form of nonlinearity in the model, mostly expressed as differences in microbial growth and efficiency for different substrates. Moreover, short-term stabilization and destabilization mechanisms operating simultaneously result in long-term accumulation of carbon characterized by low decomposition rates, independent of the characteristics of the incoming litter. We show that representation of heterogeneity in the decomposition process can lead to substantial improvements in our understanding of carbon mineralization and its long-term stability in soils.
منابع مشابه
Sorption, degradation and leaching of pesticides in soils amended with organic matter: A review
The use of pesticides in modern agriculture is unavoidable because they are required to control weeds. Pesticides are poisonous; hence, they are dangerous if misused. Understanding the fate of pesticides will be useful to use them safely. Therefore, contaminations of water and soil resources could be avoided. The fates of pesticides in soils are influenced by their sorption, decomposition and m...
متن کاملEffect of a long-term cultivation and crop rotations on organic carbon in loess derived soils of Golestan Province, Northern Iran
The effects of 34 years cultivation on organic carbon content of the loess derived soils were studied in Golestan province, northern Iran. Soil organic carbon (SOC) showed significant decrease in most of cases. The minimum and maximum SOC decreases were 4 and 51.14 Mg C ha-1/30 cm for 34 years. In a few cases there was an increase in SOC up to 16.93 Mg C ha-1/30 cm over the period of 34 years i...
متن کاملNitrogen deposition and plant species interact to influence soil carbon stabilization
Feike A. Dijkstra* Sarah E. Hobbie Johannes M. H. Knops and Peter B. Reich Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA Department of Forest Resources, University of Minnesota, St Paul, MN 55108, USA *Correspondence: E-mail: [email protected] Abstract Anthropogenic ni...
متن کاملOrganic nitrogen storage in mineral soil: Implications for policy and management.
Nitrogen is one of the most important ecosystem nutrients and often its availability limits net primary production as well as stabilization of soil organic matter. The long-term storage of nitrogen-containing organic matter in soils was classically attributed to chemical complexity of plant and microbial residues that retarded microbial degradation. Recent advances have revised this framework, ...
متن کاملAge of Soil Organic Matter and Soil Respiration: Radiocarbon Constraints on Belowground C Dynamics
Radiocarbon data from soil organic matter and soil respiration provide powerful constraints for determining carbon dynamics and thereby the magnitude and timing of soil carbon response to global change. In this paper, data from three sites representing well-drained soils in boreal, temperate, and tropical forests are used to illustrate the methods for using radiocarbon to determine the turnover...
متن کامل